Trigger points – what are they?

Trigger points are the most common source of muscle pain. There are many factors that affect a trigger point and for best results they should all be identified.

I’m going to put a wild bet out there that everyone has a trigger point in at least one muscle of their body. Some have more than others. Who of you are regularly rubbing their shoulders or elbows? More and more we are sitting at the computer or looking down at our phones (sorry for writing this blog) causing prolonged tension on muscles around the neck and shoulder, resulting in the development of trigger points.

What is a Trigger point?

It is defined as a hypersensitive palpable nodule in taut bands of muscle fibers. Meaning very small bundles of muscle fiber have become contracted/”knotted” due to a chemical imbalance within the tissue.  The area is very painful and can cause you to jump or cramp on palpation. It can cause referred pain, weakness and restriction through movement. Which makes doing normal activities and training difficult.

Triger Point diagram
Diagram of trigger points within a muscle

Trigger points of individual muscles have a very specific referred pain pattern and can mimic other problems. For example pain in the forearm and wrist can be referred from Infraspinatus, a shoulder muscle. Without a detailed assessment and clearing other areas this could be misconceived as a tennis elbow.

What causes a trigger point?

A TP can be brought on in a number of ways. 

  • Poor postures held for a prolonged period, causing certain muscles to work harder while trying to support structures like the head, eventually causing TP’s.
  • Repetitive strain on muscles from overuse over multiple days, weeks and months. How many clicks of the mouse or typing are your doing? How much swiping of the smartphone? These repetitive movements take their toll.
  • Emotional stress and poor sleep can cause muscle tension. Particularly the neck and shoulder muscles.
  • A lack of movement will develop TP’s when sitting or on bed rest for a prolonged time.
  • Heavy lifting can cause the development of TP’s when the muscle is placed under excessive loads which it is not familiar with.
  • Trauma to a muscle, either as a reflex to pain or overcompensating for the weak and injured structure. This is quite common with car accidents or sports injuries.

Our muscles sit within a biochemical “soup” of  hormones, nerve transmitters and chemicals, all affecting the PH and Oxygen levels of the tissue. Your body knows the perfect recipe to keep everything balanced, but when we overload it with one or more of the above, it causes changes to the recipe, resulting in a drop in PH (becoming more acidic) and reduces the oxygen supply. This leads to the development of TP’s.

How do we treat a trigger point?

Your desire to change must be greater than your desire to stay the same. 

The following treatments for trigger points will help settle them down, but if we provide the same environment they will return.

  • Trigger point release – sustained manual pressure applied to the trigger point causes increased blood flow to remove toxins from the area, interrupts the pattern of pain and spasm and encourages the production of natural pain relieving endorphin’s.
  • Trigger point dry needling – There is a growing evidence base for trigger point dry needling. The needling causes local twitch responses which are a central nervous system reflex. This helps disrupt the pain feedback loop but also reset the acidic biochemical “soup” the muscle is sitting in, back to its normal levels.
  • Myofascial release – the surrounding tight myofascial tissue that feeds into and over the trigger points could also be restricted, causing further exacerbation of the area. Using this technique will give some length back to these structures and can alleviate the trigger point.

Once the hands on therapy has been applied it is not the end of treatment. The muscles with the TP’s will need to be stretched to help prevent their return. Postural correction and stability exercises for surrounding muscles may need to be followed. Changes ergonomically may need to be enforced to prevent falling back into poor habits. Also looking at ways of alleviating stress through improved sleep, meditation, breathing techniques and increase of general exercise.

All of these factors will need to be considered to provide long lasting benefit and avoid their return.

  1. Travell & Simon (1999). Myofascial Pain and Dysfunction: The Trigger Point Manual
  2. Shah et al (2008) Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: An application of muscle pain concepts to myofascial pain syndrome. Journal of Bodywork and Movement Therapies
  3. Simons, (2008), New Views of Myofascial Trigger Points: Etiology and Diagnosis, Archives of Physical Medicine and Rehabilitation

Myofascial Release

Myofascia interweaves through our muscles and takes up to 80% of muscle mass. Consider this when you’re doing your stretching and but not getting the results you wanted, it’s possibly due to fascial restrictions.

What is Myofascia?

Fascia is the largest system in the body with the appearance of spider’s web. Fascia is very densely woven from the top of the head to our toes, covering and interpenetrating every muscle, bone, nerve, artery and vein, all our internal organs including the heart, lungs, brain and spinal cord. In this way, you can begin to see that each part of the body is connected to every other part by the fascia, like a fitted suit.

How would it affect me?

Myofascia interweaves through our muscles and takes up to 80% of muscle mass. Consider this when you’re doing your stretching and but not getting the results you wanted, it’s possibly due to fascial restrictions.

I’d like you to try something. Reach behind your back with your right hand, grab a handful of the shirt/top in the middle of your back. Now try and lift your left hand above your head, it will likely be restricted and wind up in certain areas. Think about the tightness and restriction you might feel doing an overhead lift or in the back when squatting, it could be the fascia pulling on these areas.

One study has shown that tightness in the posterior neck muscles can cause a significant decrease in hamstring length and strength. (1)

What causes it to get tight?

Postural adaptations, trauma, inflammatory responses, and surgical procedures create myofascial restrictions that can produce tensile pressures of approximately 2,000 pounds per square inch on pain sensitive structures that do not show up in many of the standard tests (x-rays, MRI scans, etc.)

What does Myofascial release involve?

The MFR technique appears quite light as it puts a slow sustained shearing force on the superficial layer of fascia that lies beneath the skin. The superficial layer taps into other deeper structures within muscle and other systems of the body. There is no oil used as it allows for more feedback detecting for fascial restrictions into the therapist’s hands. There is extensive evidence that shows myofascial release is an effective tool in improving flexibility and reducing pain (2,3,4,5)

How does it differ from a deep tissue massage?

With DTM this is more directed to muscle tissue that has adhesions or is tightened and needs deep pressure to bring back some length and lower its tone. Although the deep pressure can be painful depending on how sensitive the tissue is and pain tolerances of the individual.

 

  1. McPartland et al (1996) Rectus capitis posterior minor: a small but important suboccipital muscle, Journal of Bodywork and Movement Therapies
  2. Hsieh et al,  (2002) Effectiveness of four conservative treatments for subacute low back pain: a randomized clinical trial. Spine.
  3. Wong, K.-K. et al, (2016) Mechanical deformation of posterior thoracolumbar fascia after myofascial release in healthy men – a study of dynamic ultrasound. Physiotherapy
  4. LeBauer et al, (2008) The effect of myofascial release (MFR) on an adult with idiopathic scoliosis. J Bodyw Mov Ther.
  5. Ajimsha et al (2012) Effectiveness of myofascial release in the management of lateral epicondylitis in computer professionals. Arch. Phys. Med. Rehabi.
  6. Ajimsha, M.S. et al, (2014) Effectiveness of Myofascial release in the management of chronic low back pain in nursing professionals Journal of Bodywork and Movement Therapies